Calibration for an Ensemble of Grapevine Phenology Models under Different Optimization Algorithms

نویسندگان

چکیده

Vine phenology modelling is increasingly important for winegrowers and viticulturists. Model calibration often required before practical applications. However, when multiple models optimization methods are applied different varieties, it rarely known which factor tends to mostly affect the results. We mainly aim investigate main source of variability in errors flowering timings two varieties vine Douro Demarcated Region (DDR) Portugal; this based on five model simulations that use optimal parameters estimated by three algorithms (MLE, SA SCE-UA). Our results indicate can be affected initially assumed parameter boundary. Restricting initial distribution a narrow range impedes algorithm from exploring full space searching parameters. This lead largest variation models. At an identified appropriate boundary, difference between represents uncertainty, while choice contributes least overall uncertainty. The smaller among or (tools analysis) compared could reliability calibration. All show similar terms obtained goodness-of-fit: RMSE (MAE) 5–6 (4–5) days with negligible mean bias moderately good R2 (0.5–0.6) ensemble median predictor. Nevertheless, predictive performance result differently values, due equifinality multi-modal issue combinations give occurs non-linear structure those near-linear one. Yet, former found outperform latter ones predicting timing DDR. Overall, our findings highlight importance carefully defining boundary decomposing total variance prediction errors. study expected bring new insights will help better inform users about these factors involved Nonetheless, each change depending specific situation. Details how continuous improvement important.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ADABOOST ENSEMBLE ALGORITHMS FOR BREAST CANCER CLASSIFICATION

With an advance in technologies, different tumor features have been collected for Breast Cancer (BC) diagnosis, processing of dealing with large data set suffers some challenges which include high storage capacity and time require for accessing and processing. The objective of this paper is to classify BC based on the extracted tumor features. To extract useful information and diagnose the tumo...

متن کامل

The ensemble clustering with maximize diversity using evolutionary optimization algorithms

Data clustering is one of the main steps in data mining, which is responsible for exploring hidden patterns in non-tagged data. Due to the complexity of the problem and the weakness of the basic clustering methods, most studies today are guided by clustering ensemble methods. Diversity in primary results is one of the most important factors that can affect the quality of the final results. Also...

متن کامل

an application of fuzzy logic for car insurance underwriting

در ایران بیمه خودرو سهم بزرگی در صنعت بیمه دارد. تعیین حق بیمه مناسب و عادلانه نیازمند طبقه بندی خریداران بیمه نامه براساس خطرات احتمالی آنها است. عوامل ریسکی فراوانی می تواند بر این قیمت گذاری تاثیر بگذارد. طبقه بندی و تعیین میزان تاثیر گذاری هر عامل ریسکی بر قیمت گذاری بیمه خودرو پیچیدگی خاصی دارد. در این پایان نامه سعی در ارائه راهی جدید برای طبقه بندی عوامل ریسکی با استفاده از اصول و روش ها...

PERFORMANCE OF DIFFERENT ANT-BASED ALGORITHMS FOR OPTIMIZATION OF MIXED VARIABLE DOMAIN IN CIVIL ENGINEERING DESIGNS

Ant colony optimization algorithms (ACOs) have been basically introduced to discrete variable problems and applied to different research domains in several engineering fields. Meanwhile, abundant studies have been already involved to adapt different ant models to continuous search spaces. Assessments indicate competitive performance of ACOs on discrete or continuous domains. Therefore, as poten...

متن کامل

An Improved Ensemble Method for Completely Automatic Optimization of Spectral Interval Selection in Multivariate Calibration

In our recent work, Monte Carlo Cross Validation Stacked Regression (MCCVSR) is proposed to achieve automatic optimization of spectral interval selection in multivariate calibration. Though MCCVSR performs well in normal conditions, it is still necessary to improve it for more general applications. According to the well-known principle of "garbage in, garbage out (GIGO)", as a precise ensemble ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Agronomy

سال: 2023

ISSN: ['2156-3276', '0065-4663']

DOI: https://doi.org/10.3390/agronomy13030679